The value of transluminal attenuation gradient indices to predict myocardial bridge with systolic compression on CCTA
ZHANG Ji-ping1, LI Li2, WANG Min2
1. Jining Medical University of Clinical Medicine, Jining Shandong 272000, China;
2. Department of Radiology, Jining No.1 people’s Hospital, Jining Shandong 272000, China
Abstract:Objective: To study the diagnostic value of transluminal attenuation gradient(TAG) indices of left anterior descending artery(LAD) for myocardial bridge(MB) with significant systolic compression measured by coronary computed tomography angiography(CCTA). Materials and Methods: Eighty-one patients with confirmed MB who underwent CCTA were retrospectively included. TAG, the standardized TAG(TAGs) and corrected mural coronary opacification(CMCO) difference, MB length and MB depth were calculated to analyse the diagnostic value on MB with significant systolic compression. Results: TAG, the standardized TAG and corrected mural coronary opacification difference with significant systolic compression, slight systolic compression and without systolic compression had significant statistical differences(all P<0.05), but MB length and MB depth had no significant statistical differences(all P>0.05). ROC curve showed TAGs and CMCO difference had high diagnostic value(AUC 0.81, 0.83), combination TAGs with CMCO difference(AUC 0.89) showed remarkable improvement. Conclusion: TAG, TAGs and CMCO difference have relationship with the extent of dynamic compression of MB and have high diagnostic value on MB with significant systolic compression. So the indices have value to identify significant systolic compression of MB.
张极平1,李 丽2,王 敏2. 冠状动脉CTA管腔密度梯度参数预测心肌桥收缩压迫程度的价值[J]. 中国临床医学影像杂志, 2020, 31(5): 338-342.
ZHANG Ji-ping1, LI Li2, WANG Min2. The value of transluminal attenuation gradient indices to predict myocardial bridge with systolic compression on CCTA. JOURNAL OF CHINA MEDICAL IMAGING, 2020, 31(5): 338-342.
[1]Tarantini G, Migliore F, Cademartiri F, et al. Left anterior descending artery myocardial bridging: a clinical approach[J]. J Am Coll Cardiol, 2016, 68(25): 2887-2899.
[2]Corban MT, Hung OY, Eshtehardi P, et al. Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies[J]. J Am Coll Cardiol, 2014, 63(22): 2346-2355.
[3]Migliore F, Maffei E, Perazzolo Marra M, et al. LAD coronary artery myocardial bridging and apical ballooning syndrome[J]. JACC Cardiovascular Imaging, 2013, 6(1): 32-41.
[4]Stuijfzand WJ, Danad I, Raijmakers PG, et al. Additional value of transluminal attenuation gradient in CT angiography to predict hemodynamic significance of coronary artery stenosis[J]. JACC Cardiovascular imaging, 2014, 7(4): 374-386.
[5]Bourassa MG, Butnaru A, Lespérance J, et al. Symptomatic myocardial bridges: overview of ischemic mechanisms and current diagnostic and treatment strategies[J]. J Am Coll Cardiol, 2003, 41(3): 351-359.
[6]Kim P, Hur GS, Namgung J, et al. Frequency of myocardial bridges and dynamic compression of epicardial coronary arteries: a comparison between computed tomography and invasive coronary angiography[J]. Circulation, 2009, 119(10): 1408-1416.
[7]刘世合. 双源CT对心肌桥-壁冠状动脉的评价[D]. 济南:山东大学,2009.
[8]Steigner ML, Mitsouras D, Whitmore AG, et al. Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography[J]. Circ Cardiovasc Imaging, 2010, 3(2): 179-186.
[9]Li Y, Yu M, Zhang J, et al. Non-invasive imaging of myocardial bridge by coronary computed tomography angiography: the value of transluminal attenuation gradient to predict significant dynamic compression[J]. Eur Radiol, 2017, 27(5): 1971-1979.
[10]Ishikawa Y, Akasaka Y, Ito K, et al. Significance of anatomical properties of myocardial bridge on atherosclerosis evolution in the left anterior descending coronary artery[J]. Atherosclerosis, 2006, 186(2): 380-389.
[11]Mecit K, Cihan D, Irmak D, et al. Detection of myocardial bridging with ECG-gated MDCT and multiplanar reconstruction[J]. AJR, 2006, 186(2): 391-394.
[12]Schwarz ER, Klues HG, Vom DJ, et al. Functional, angiographic and intracoronary Doppler flow characteristics in symptomatic patients with myocardial bridging: effect of short-term intravenous beta-blocker medication[J]. J Am Coll Cardiol, 1996, 27(7): 1637-1645.
[13]Leschka S, Koepfli P, Husmann L, et al. Myocardial bridging: depiction rate and morphology at CT coronary angiography—comparison with conventional coronary angiography[J]. Radiology, 2008, 246(3): 754-762.
[14]Jodocy D, Aglan I, Friedrich G, et al. Left anterior descending coronary artery myocardial bridging by multislice computed tomography: correlation with clinical findings[J]. Eur J Radiol, 2010, 73(1): 89-95.
[15]Choi JH, Min JK, Labounty TM, et al. Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis[J]. JACC Cardiovascular Imaging, 2011, 4(11): 1149-1157.
[16]Wong DTL, Ko BS, Cameron JD, et al. Comparison of diagnostic accuracy of combined assessment using adenosine stress computed tomography perfusion+computed tomography angiography with transluminal attenuation gradient+computed tomography angiography against invasive fractional flow reserve[J]. J Am Coll Cardiol, 2014, 63(18): 1904-1912.
[17]Zheng M, Wei M, Wen D, et al. Transluminal attenuation gradient in coronary computed tomography angiography for determining stenosis severity of calcified coronary artery: a primary study with dual-source CT[J]. Eur Radiol, 2015, 25(5): 1219-1228.
[18]贾学燕. 血管腔CT密度值测量在冠状动脉闭塞与亚闭塞鉴别诊断中的价值研究[D]. 大连:大连医科大学,2016.
[19]Chatzizisis YS, George E, Cai T, et al. Accuracy and reproducibility of automated, standardized coronary transluminal attenuation gradient measurements[J]. Int J Cardiovasc Imaging, 2014, 30(6): 1181-1189.