2型糖尿病患者岛叶功能连接异常的静息态功能磁共振研究

王 嫚1,张东升2,齐 菲1,苏 宇1,谢清明1,汤 敏2,张小玲2

中国临床医学影像杂志 ›› 2020, Vol. 31 ›› Issue (7) : 466-469.

中国临床医学影像杂志 ›› 2020, Vol. 31 ›› Issue (7) : 466-469. DOI: 10.12117/jccmi.2020.07.003
中枢神经影像学

2型糖尿病患者岛叶功能连接异常的静息态功能磁共振研究

  • 王 嫚1,张东升2,齐 菲1,苏 宇1,谢清明1,汤 敏2,张小玲2
作者信息 +

Abnormal functional connectivity of the insula in type 2 diabetes mellitus: a resting-state functional MRI study

  • WANG Man1, ZHANG Dong-sheng2, QI Fei1, SU Yu1, XIE Qing-ming1, TANG Min2, ZHANG Xiao-ling2
Author information +
文章历史 +

摘要

目的:探讨2型糖尿病(T2DM)是否会导致岛叶与全脑功能连接异常及其在T2DM脑损伤神经机制中的作用。方法:纳入人口学资料相匹配的T2DM患者及健康被试各33例,所有被试行静息态fMRI检查及神经心理学测试,观察两组间岛叶与全脑功能连接差异,并提取显著差异脑区的功能连接平均值,将功能连接平均值与临床资料及神经心理学评分行相关性分析。结果:相比健康被试者,T2DM患者岛叶与双侧额下回、右侧颞上回、左侧角回及左侧小脑功能连接减低,未发现功能连接增强的脑区,并且T2DM患者岛叶与右侧额下回功能连接强度与糖化血红蛋白(HbA1c)呈负相关(r=-0.379,P=0.035)。结论:T2DM患者岛叶与全脑存在广泛的功能连接异常,这可能是其听觉及视觉空间功能损伤的神经基础,持续的高糖状态可能导致患者抑制性控制(IC)功能受损。

Abstract

Objective: To investigate whether type 2 diabetes mellitus(T2DM) causes abnormal functional connectivity between the insula and the whole brain and its role in the neural mechanism of T2DM brain injury. Methods: A total of 33 patients with T2DM and healthy subjects(HC) matched with demographic data were included. All subjects underwent resting-state fMRI and neuropsychological tests to observe the difference in functional connectivity between the insula and the whole brain between the two groups, and the mean value of functional connections of significantly different brain regions were extracted. Then the correlation between the extracted mean value of functional connections and clinical data and neuropsychological evaluation was analyzed. Results: Compared with HC, the insula showed decreased functional connectivity between bilateral inferior frontal gyrus, right superior temporal gyrus, left angular gyrus and left cerebellum in T2DM patients, and no brain areas with enhanced functional connections were found. Moreover, the functional connectivity between the insula and the right inferior frontal gyrus in T2DM patients was negatively correlated with HbA1c(r=-0.379, P=0.035). Conclusion: There is a wide range of functional connectivity abnormalities between the insula and whole brains of T2DM patients, which may be the neurological basis of auditory and visual spatial function impairment. Continuous high glucose status may cause IC function impairment in T2DM patients.

关键词

糖尿病 / 2型 / 脑损伤 / 磁共振成像

Key words

Diabetes mellitus, type 2 / Brain injuries / Magnetic resonance imaging

引用本文

导出引用
王 嫚1,张东升2,齐 菲1,苏 宇1,谢清明1,汤 敏2,张小玲2. 2型糖尿病患者岛叶功能连接异常的静息态功能磁共振研究[J]. 中国临床医学影像杂志. 2020, 31(7): 466-469 https://doi.org/10.12117/jccmi.2020.07.003
WANG Man1, ZHANG Dong-sheng2, QI Fei1, SU Yu1, XIE Qing-ming1, TANG Min2, ZHANG Xiao-ling2. Abnormal functional connectivity of the insula in type 2 diabetes mellitus: a resting-state functional MRI study[J]. Journal of China Clinic Medical Imaging. 2020, 31(7): 466-469 https://doi.org/10.12117/jccmi.2020.07.003
中图分类号: R587.1    R651.15    R445.2   

参考文献

[1]Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes atlas: clobal estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabet Res Clin Pract, 2018, 138: 271-281. [2]Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. Jama, 2017, 317(24): 2515-2523. [3]Pedditzi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies[J]. Age Aging, 2016, 45(1): 14-21. [4]Karvani M, Simos P, Stavrakaki S, et al. Neurocognitive impairment in type 2 diabetes mellitus[J]. Hormones(Athens), 2019, 18(4): 523-534. [5]Yang SQ, Xu ZP, Xiong Y, et al. Altered intranetwork and internetwork functional connectivity in type 2 diabetes mellitus with and without cognitive impairment[J]. Sci Rep, 2016, 13(6): 32980. [6]Dionisio S, Mayoglou L, Cho SM, et al. Connectivity of the human insula: A cortico-cortical evoked potential(CCEP) study[J]. Cortex, 2019, 120: 419-442. [7]Uddin LQ, Nomi JS, Hebert-Seropian B, et al. Structure and function of the human insula[J]. J Clin Neurophysiol, 2017, 34(4): 300-306. [8]Liu J, Liu T, Wang W, et al. Reduced gray matter volume in patients with type 2 diabetes mellitus[J]. Front Aging Neuros, 2017, 22(9): 161. [9]Xia W, Chen YC, Ma J. Resting-state brain anomalies in type 2 diabetes: a meta-analysis[J]. Front Aging Neuros, 2017, 9: 14. [10]Miyake A, Friedman NP, Emerson MJ, et al. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis[J]. Cogn Psychol, 2000, 41(1): 49-100. [11]Zhang R, Geng X, Lee TMC. Large-scale functional neural network correlates of response inhibition: an fMRI meta-analysis[J]. Brain Struct Func, 2017, 222(9): 3973-3990. [12]Chikazoe J. Localizing performance of go/no-go tasks to prefrontal cortical subregions[J]. Cur Opin Psychiatry, 2010, 23(3): 267-272. [13]Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on[J]. Trends Cogn Sci, 2014, 18(4): 177-185. [14]Aron AR, Fletcher PC, Bullmore ET, et al. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans[J]. Nature Neurosci, 2003, 6(2): 115-116. [15]Cai W, Ryali S, Chen T, et al. Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets[J]. J Neurosci, 2014, 34(44): 14652-14667. [16]Hou D, Ma Y, Wang B, et al. Selective impairment of attentional networks of executive control in middle-aged subjects with type 2 diabetes mellitus[J]. Med Sci Monit, 2018, 24: 5355-5362. [17]Black S, Kraemer K, Shah A, et al. Diabetes, depression, and cognition: a recursive cycle of cognitive dysfunction and glycemic dysregulation[J]. Cur Diabet Rep, 2018, 18(11): 118. [18]Yi HG, Leonard MK, Chang EF. The encoding of speech sounds in the superior temporal gyrus[J]. Neuron, 2019, 102(6): 1096-1110. [19]Gu J, Zhang H, Liu B, et al. An investigation of the neural association between auditory imagery and perception of complex sounds[J]. Brain Struct Func, 2019, 224(8): 2925-2937. [20]Spray A, Beer AL, Bentall RP, et al. Microstructure of the superior temporal gyrus and hallucination proneness—a multi-compartment diffusion imaging study[J]. Neuro Image Clin, 2018, 20: 1-6. [21]Ren H, Wang Z, Mao Z, et al. Hearing loss in type 2 diabetes in association with diabetic neuropathy[J]. Arch Med Res, 2017, 48(7): 631-637. [22]Rabellino D, Densmore M, Theberge J, et al. The cerebellum after trauma: resting-state functional connectivity of the cerebellum in posttraumatic stress disorder and its dissociative subtype[J]. Human Brain Mapping, 2018, 39(8): 3354-3374. [23]Van Braeckel KN, Taylor HG. Visuospatial and visuomotor deficits in preterm children: the involvement of cerebellar dysfunctioning[J]. Develop Med Child Neurol, 2013, 55(Suppl 4): 19-22. [24]Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies[J]. NeuroImage, 2009, 44(2): 489-501. [25]Beckmann CF, DeLuca M, Devlin JT, et al. Investigations into resting-state connectivity using independent component analysis[J]. Biolog Sci, 2005, 360(1457): 1001-1013. [26]Smitha KA, Akhil-Raja K, Arun KM, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317.

基金

国家自然科学基金面上项目(基金编号:81270416);陕西省重点研发计划 (基金编号:2018ZDXM-SF-038);陕西省社会发展科技攻关项目(基金编号:2019SF-131)。

Accesses

Citation

Detail

段落导航
相关文章

/