|
|
The value of diffusion-weighted imaging based on monoexponential and biexponential model in#br# differentiating benign and malignant hepatic hypervascular lesions |
YING Ming-liang, SHU Jin-er, PAN Jiang-feng, LU Jin-hua, PAN Yong-hao, JIANG Yang, FU Jian-fei |
Jinhua Hospital, Zhejiang University, Jinhua Zhejiang 321000, China |
|
|
Abstract Objective: To investigate the value of monoexponential and biexponential model diffusion-weighted imaging in differentiating benign and malignant hepatic hypervascular lesions. Materials and Methods: Forty-four patients(48 lesions) with pathologically or clinically confirmed hepatic hypervascular lesions, were analyzed retrospectively and categorized into benign and malignant groups. All patients underwent routine MR scan and parallel multi b value DWI(b=0, 50, 100, 150, 200, 400, 600, 800, 1 000, 1 200 s/mm2) to obtain the monoexponential modeling value ADC(b=0, 800 s/mm2) and IVIM parameters of biexponential modeling: fast diffusion coefficient Dfast value, slow diffusion coefficient Dslow value and fast diffusion component percentage of F value. Independent two-samples t test was used to compare ADC value, Dfast value, Dslow value and F value between hypervascular benign and malignant groups. Receiver operating characteristic(ROC) curve was used to evaluate those parameters in differentiating benign and malignant lesions and identifying hyper- or hypovascular. Results: The ADC, Dslow value of benign group((1.75±0.68)×10-3 mm2/s, (1.61±0.39)×10-3 mm2/s) were statistically higher than those of malignant group((1.21±0.21)×10-3 mm2/s, (0.99±0.19)×10-3 mm2/s). The Dfast and F values of benign group((30.93±20.00)×10-3 mm2/s, (34.01±11.48)%) were higher than those of malignant group((28.56±18.56)×10-3 mm2/s, (31.37±9.86)%) with no statistical significance. The sensitivity, specificity, accuracy and the area under ROC in differentiating benign and malignant hypervascular lesions were 80.76%, 86.36%, 83.33%, 0.875; 92.30%, 95.45%, 95.83%, 0.945; 46.12%, 72.72%, 60.87%, 0.534, 53.84%, 68.18%, 60.41%, 0.545 by using a threshold ADC, Dslow, Dfast, F values of 1.35×10-3 mm2/s, 1.25×10-3 mm2/s, 20.61×10-3 mm2/s, 32.36% respectively. Conclusion: The ADC value obtained with monoexponential modeling and Dslow obtained with biexponential modeling are useful in differentiating benign and malignant hepatic hypervascular lesions, and Dslow has the highest diagnostic efficacy.
|
Received: 19 April 2016
|
|
|
|
|
Cite this article: |
YING Ming-liang,SHU Jin-er,PAN Jiang-feng, et al. The value of diffusion-weighted imaging based on monoexponential and biexponential model in#br# differentiating benign and malignant hepatic hypervascular lesions[J]. JOURNAL OF CHINA MEDICAL IMAGING, 2017, 28(1): 39-43.
|
|
|
|
URL: |
http://www.jccmi.com.cn/EN/ OR http://www.jccmi.com.cn/EN/Y2017/V28/I1/39 |
[1]Yoon JH, Lee JM, Yu MH, et al. Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters[J]. J Magn Reson Imaging, 2014, 39(2): 276-285.
[2]Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges[J]. AJR, 2011, 196(6): 1351-1361.
[3]Moteki T, Horikoshi H. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor[J]. J Magn Reson Imaging, 2006, 24(3): 637-645.
[4]鲁果果,高雪梅,程敬亮,等. 单、双指数模型扩散加权成像鉴别诊断肝脏良、恶性肿瘤的价值[J]. 中华放射学杂志,2015,49(1):47-51.
[5]Doblas S, Wagner M, Leitao HS, et al. Determination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived measurements[J]. Invest Radiol, 2013, 48(10): 722-728.
[6]Ichikawa S, Motosugi U, Ichikawa T, et al. Intravoxel incoherent motion imaging of focal hepatic lesions[J]. J Magn Reson Imaging, 2013, 37(6): 1371-1376.
[7]Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407.
[8]Federau C, Meuli R, O’Brien K, et al. Perfusion measurement in brain gliomas with intravoxel incoherent motion MRI[J]. Am J Neuroradiol, 2014, 35(2): 256-262.
[9]Wirestam R, Borg M, Brockstedt S, et al. Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique[J]. Acta Radiol, 2001, 42(2): 123-128.
[10]Sumi M, Van Cauteren M, Sumi T, et al. Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors[J]. Radiology, 2012, 263(3): 770-777.
[11]Sigmund EE, Cho GY, Kim S, et al. Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer[J]. Magn Reson Med, 2011, 65(5): 1437-1447.
[12]Chandarana H, Lee VS, Hecht E, et al. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience[J]. Invest Radiol, 2011, 46(5): 285-291.
[13]鲁果果,王斯嘉,高雪梅,等. 单双指数模型扩散加权成像在肝脏病变评价中的应用进展[J]. 中华肝脏病杂志,2015,23(7):557-560.
[14]Pang Y, Turkbey B, Bernardo M, et al. Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations[J]. Magn Reson Med, 2013, 69(2): 553-562. |
|
|
|