|
|
Research of fetal 3D volumetric MRI |
YU Hong, WANG Jing-shi |
Dalian Municipal Women and Children’s Medical Center, Dalian Liaoning 116033, China |
|
|
Abstract With the development of MRI technology, especially the wide application of fast magnetic resonance spectroscopic imaging, fetal 3D volumetric MRI has become an emerging technology for prenatal diagnosis. It is more accurate, more intuitive to observe fetal development, tridimensional structure, mutual relations, together with strong third dimension, large visual field and arbitrary angle, which is gradually applied in various fetal systems in order to make up the deficiency of 2D MRI. In recent years, 3D MRI has been used combined with computer(semi) automatic segmentation technology for volumetric measurement of fetal structures in an attempt to obtain a more detailed image of fetus in a non-invasive way. The developing fetus has also been reconstructed in 3D model, which plays an important role in evaluating normal anatomy, physiological changes and congenital malformations of fetal systems.
|
Received: 13 February 2019
|
|
|
|
|
[1]庞颖,夏黎明,孙子燕,等. 3D MRI诊断胎儿体表畸形的研究[J]. 磁共振成像,2012,3(3):194-199.
[2]Kubik Huch RA, Wildermuth S, Cettuzzi L, et al. Fetus and uteroplacental unit: fast MR imaging with three-dimensional reconstruction and volumetry—feasibility study[J]. Radiology, 2001, 219(2): 567-573.
[3]Jacques SF. MRI of the fetal brain and spinal cord: Techniques and protocols[J]. JPNR, 2012, 1(3): 147-153.
[4]Chapple KS, Purves J, Metherall P, et al. Three-dimensional magnetic resonance visualisation of fistula-in-ano[J]. Tech Coloproctol, 2017, 21(12): 979-983.
[5]Razavi RS, Derek LG. Three-dimensional magnetic resonance imaging of congenital cardiac anomalies[J]. Cardiol Young, 2003, 13(5): 461-465.
[6]Luks FI, Carr SR, Ponte B, et al. Preoperative planning with magnetic resonance imaging and computerized volume rendering in[J]. AJOG, 2001, 185(1): 216.
[7]Anquez J, Angelini E, Bloch I, et al. Interest of the steady state free precession(SSFP) sequence for 3D modeling of the whole fetus[J]. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007(1): 771-774.
[8]朱铭. 胎儿磁共振成像——产前诊断的新技术[J]. 中国产前诊断杂志:电子版,2013,5(4):1-2.
[9]Csilla B, Gregor K, Peter CB, et al. Assessment of lung development in isolated congenital diaphragmatic hernia using signal intensity ratios on fetal MR imaging[J]. Eur Radiol, 2010, 20(4): 829-837.
[10]蔡萍. 胎儿MRI水成像及三维结肠成像技术在产前诊断中的临床应用[D]. 重庆:第三军医大学,2008.
[11]李伟. 基于脑MR图像的三维组织自动分割[D]. 广州:南方医科大学,2009.
[12]Almuzian M, Hind MA. Assessing the validity of ITK-SNAP software package in measuring the volume of upper airway spaces secondary to rapid maxillary expansion[J]. J Orthod Sci, 2018, 7(1): 7.
[13]Link D, Braginsky MB, Joskowicz L, et al. Automatic measurement of fetal brain development from magnetic resonance imaging: new reference data[J]. Fetal Diagn Ther, 2018, 43(2): 113-122.
[14]孙子燕,夏黎明,韩瑞,等. 胎儿结肠三维磁共振成像研究[J]. 放射学实践,2011,26(11):1216-1220.
[15]张亚林,罗伟,周启昌,等. MRI B-FFE技术在胎儿脑室测量中的应用[J]. 放射学实践,2016,31(3):267-270.
[16]Griffiths PD, Jarvis D, McQuillan H, et al. MRI of the fetal brain using a rapid 3D steady-state sequence[J]. Brit J Raidol, 2013, 86(1030): 20130168.
[17]Deborah L. Three-dimensional fetal MR imaging: will tt fulfill its promise?[J]. Radiology, 2001, 219(2): 313-315.
[18]Kinoshita Y, Okudera T, Tsurua E. Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses[J]. AJNR, 2001, 22(2): 382-388.
[19]Kostovi I, Judas M, Rados M, et al. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging[J]. Cereb Cortex, 2002, 12(5): 536-544.
[20]Andrea S, Francesca P, Paolo FF, et al. Cerebral cortex three-dimensional profiling in human fetuses by magnetic resonance imaging[J]. J Anta, 2004, 204(6): 465-474.
[21]Pier DB, Gholipour A, Afacan N, et al. 3D Super-resolution motion-corrected MRI: validation of fetal posterior fossa measurements[J]. Neuroimaging, 2016, 26(5): 539-544.
[22]Hata N, Wada T, Chiba T, et al. Three-dimensional volume rendering of fetal MR images for the diagnosis of congenital cystic adenomatoid malformation[J]. Acad Radiol, 2003, 10(3): 309-312.
[23]Edward AJ, Patricia SD, Luciano MM, et al. Fetal lung volume in fetuses with urinary tract malformations: Comparison by 2D-, 3D-sonography and magnetic resonance imaging[J]. J Matern-Fetal Neo M, 2010, 23(1): 60-68.
[24]陈丽英,蔡爱露. 胎儿影像诊断学[M]. 北京:人民卫生出版社,2014:113;202.
[25]Winkler MM, Weis M, Henzler C, et al. MRI-based ratio of fetal lung to body volume as new prognostic marker for chronic lung disease in patients with congenital diaphragmatic hernia[J]. Klin Pediatr, 2017, 229(2): 67-75.
[26]Elisabeth M, Lisa S, Maximilian S, et al. Fetal cardiac disease and fetal lung volume: an in utero MRI investigation[J]. Prenat Diagn, 2014, 34(3): 273-278.
[27]Woolf AS, Price KL, Scambler PJ, et al. Evolving concepts in human renal dysplasia[J]. J Am Soc Nephrol, 2004, 15(4): 998-1007.
[28]陆媛媛,黄群英,孙明华,等. 三维稳态进动快速成像和扩散加权成像评估胎儿肾脏发育状况的价值[J]. 中华放射学杂志,2016,50(11):874-877.
[29]Katrijn M, Joke M, Frederik DK, et al. MR volumetry of the normal fetal kidney: reference values[J]. Prenatl Diagn, 2010, 30(11): 1044-1048.
[30]孙子燕,夏黎明,王承缘,等. 三维磁共振成像在检出胎儿结肠先天异常方面的应用[J]. 磁共振成像,2010,1(6):442-447.
[31]Sasaki Y, Miyamoto T, Hidaka Y, et al. Three-dimensional magnetic resonance imaging after ultrasonography for assessment of fetal gastroschisis[J]. MRI, 2006, 24(2): 201-203.
[32]Inaoka T, Sugimori H, Sasaki Y, et al. VIBE MRI for evaluating the normal and abnormal gastrointestinal tract in fetuses[J]. AJR, 2007, 189(6): 303-308.
[33]Rajendran A, Dhanasekaran R. Enhanced possibilistic fuzzy c-means algorithm for normal and pathological brain tissue segmentation on magnetic resonance brain image[J]. AJSE, 2013, 38(9): 2375-2388.
[34]Elazab A, Wang CM, Jia FC, et al. Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy c-means clustering[J]. Comput Math Methods Med, 2015, 2015: 485-495.
[35]Anders F. MRI basic principles and applications[J]. Acta Radiologica, 2000, 41(5): 515.
[36]Diniz PR. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images[J]. Braz J Med Biol Res, 2010, 43(1): 77-84.
[37]刘萍,廖科丹,陈春林,等. 基于MRI的在体足月胎儿体表数字化三维模型的构建[J]. 中国医学影像学杂志,2015,23(1):23-26.
[38Pilling D. MRI of the fetal brain: normal development and cerebral pathologies[J]. Radiology, 2005, 235(2): 568.
[39]Wang G, Li W, Zuluaga MA, et al. Interactive medical image segmentation using deep learning with image-specific fine-tuning[J]. IEEE T Med Imaging, 2018, 37(7): 1562-1573.
[40]Hoffmann C, Grossman R, Bokov I, et al. Effect of cytomegalovirus infection on temporal lobe development in utero: quantitative MRI studies[J]. Eur Neuropsychopharmacol, 2010, 20(12): 848-854.
[41]Vlad Z, Radu V, Simona V. Magnetic resonance spectroscopy: a promise for detection of metabolic changes in the brain of intrauterine growth restriction fetuses——review article[J]. Donald School J Ultrasound Obstetr Gynecol, 2015, 9(1): 40-43.
[42]Andescavage NN, DuPlessis A, McCarter R, et al. Cerebrospinal fluid and parenchymal brain development and growth in the healthy fetus[J]. Develop Neuroscience, 2016, 38(6): 420-429.
[43]Tourbier S, Velasco-Annis C, Taimouri V, et al. Automated template-based brain localization and extraction for fetal brain MRI reconstruction[J]. NeuroImage, 2017, 155(15): 460-472.
[44]Shi F, Wang L, Gilmore JH, et al. Learning-based meta-algorithm for MRI brain extraction[J]. Med Image Comput Comput Assist Interv, 2011, 14(3): 313-321.
[45]Ber R, Hoffman D, Hoffman C, et al. Volume of structures in the fetal brain measured with a new semiautomated method[J]. AJNR, 2017, 38(11): 2193-2198.
[46]Jarvis D, Griffiths PD. Clinical applications of 3D volume MR imaging of the fetal brain in utero[J]. Prenat Diagn, 2017, 37(6): 556-565.
[47]Scelsa B, Rustico M, Righini A, et al. Mild ventriculomegaly from fetal consultation to neurodevelopmental assessment: A single center experience and review of the literature[J]. Eur J Pediatr Neurol, 2018, 26(16): 919-928.
[48]Si XZ, Yun HX, Fu RL, et al. Lateral ventricular volume measurement by 3D MR hydrography in fetal ventriculomegaly and normal lateral ventricles[J]. J Magn Reson Imaging, 2018, 48(1): 266-273.
[49]Meyers ML, Garcia JR, Blough KL, et al. Fetal lung volumes by MRI: normal weekly values from 18 through 38 weeks’ gestation[J]. AJR, 2018, 211(2): 1-7. |
|
|
|