Abstract:The dual-energy CT virtual non-calcium technology can analyze abnormal attenuation of marrow edema caused by occult fracture visually and quantitatively, which has a high negative predictive value in the detection of bone marrow abnormalities. Therefore, dual-energy CT might be a fast and available screening tool to rule out occult fracture. Advances of dual-energy CT virtual non-calcium technique in the diagnosis of occult fracture were reviewed in this article.
陈婷婷,刘白鹭. 双源CT VNC技术在诊断隐匿性骨折中的应用进展[J]. 中国临床医学影像杂志, 2016, 27(1): 66-68.
CHEN Ting-ting, LIU Bai-lu. Advances of dual-energy CT virtual non-calcium technique in the diagnosis of occult fracture. JOURNAL OF CHINA MEDICAL IMAGING, 2016, 27(1): 66-68.
[1]Manara M, Varenna M. A clinical overview of bone marrow edema[J]. Reumatismo, 2014, 66(2): 184-196.
[2]Han IH, Chin DK, Kuh SU, et al. Magnetic resonance imaging findings of subsequent fractures after vertebroplasty[J]. Neurosurgery, 2009, 64(4): 740-744.
[3]Karantanas AH. Acute bone marrow edema of the hip: role of MR imaging[J]. Eur Radiol, 2007, 17(9): 2225-2236.
[4]Andrews CL. From the RSNA refresher courses. Evaluation of the marrow space in the adult hip[J]. Radiographics, 2000, 20(1): S27-S42.
[5]Memarsadeghi M, Breitenseher MJ, Schaefer-Prokop C, et al. Occult scaphoid fractures: comparison of multidetector CT and MR imaging-initial experience[J]. Radiology, 2006, 240(1): 169-176.
[6]Carberry GA, Pooler BD, Binkley N, et al. Unreported vertebral body compression fractures at abdominal multidetector CT[J]. Radiology, 2013, 268(1): 120-126.
[7]Desai MA, Peterson JJ, Garner HW, et al. Clinical utility of dual-energy CT for evaluation of tophaceous gout[J]. RadioGraphics, 2011, 31(5): 1365-1375.
[8]Glazebrook KN, Guimaraes LS, Murthy NS, et al. Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation[J]. Radiology, 2011, 261(2): 516-524.
[9]Pache G, Krauss B, Strohm P, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions-feasibility study[J]. Radiology, 2010, 256(2): 617-624.
[10]Deng K, Sun C, Liu C, et al. Initial experience with visualizing hand and foot tendons by dual energy computed tomography[J]. Clin Imaging, 2009, 33(5): 384-389.
[11]Sun C, Miao F, Wang XM, et al. An initial qualitative study of dual-energy CT in the knee ligaments[J]. Surg Radiol Anat, 2008, 30(5): 443-447.
[12]Zhou C, Zhao YE, Luo S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with fractures[J]. Acad Radiol, 2011, 18(10): 1252-1257.
[13]Bamberg F, Dierks A, Nikolaou K, et al. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation[J]. Eur Radiol, 2011, 21(7): 1424-1429.
[14]Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience[J]. Eur Radiol, 2007, 17(6): 1510-1517.
[15]Graser A, Johnson TR, Bader M, et al. Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience[J]. Invest Radiol, 2008, 43(2): 112-119.
[16]Yeh BM, Shepherd JA, Wang ZJ, et al. Dual-energy and low-kVp CT in the abdomen[J]. AJR, 2009, 193(1): 47-54.
[17]Nicolaou S, Liang T, Murphy DT, et al. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system[J]. AJR, 2012, 199(5): S78-S86.
[18]Ai S, Qu M, Glazebrook KN, et al. Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting[J]. Skeletal Radiol, 2014, 43(9): 1289-1295.
[19]Boks SS, Vroegindeweij D, Koes BW, et al. MRI follow-up of posttraumatic bone bruises of the knee in general practice[J]. AJR, 2007, 189(3): 556-562.
[20]Reagan AC, Mallinson PI, O’Connell T, et al. Dual-energy computed tomographic virtual noncalcium algorithm for detection of bone marrow edema in acute fractures: early experiences[J]. J Comput Assist Tomogr, 2014, 38(5): 802-805.
[21]Guggenberger R, Gnannt R, Hodler J, et al. Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle: comparison with MR imaging[J]. Radiology, 2012, 264(1): 164-173.
[22]Reddy T, McLaughlin PD, Mallinson PI, et al. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema[J]. Emerg Radiol, 2015, 22(1): 25-29.
[23]Reiter M, O’Brien SD, Bui-Mansfield LT, et al. Greater trochanteric fracture with occult intertrochanteric extension[J]. Emerg Radiol, 2013, 20(5): 469-472.
[24]Chana R, Noorani A, Ashwood N, et al. The role of MRI in the diagnosis of proximal femoral fractures in the elderly[J]. Injury, 2006, 37(2): 185-189.
[25]Pham T, Azulay-Parrado J, Champsaur P, et al. “Occult” osteoporotic vertebral fractures: vertebral body fractures without radiologic collapse[J]. Spine, 2005, 30(21): 2430-2435.
[26]Bazzocchi A, Spinnato P, Albisinni U, et al. A careful evaluation of scout CT lateral radiograph may prevent unreported vertebral fractures[J]. Eur J Radiol, 2012, 81(9): 2353-2357.
[27]Body JJ, Bergmann P, Boonen S, et al. Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club[J]. Osteoporos Int, 2011, 22(11): 2769-2788.
[28]Wang CK, Tsai JM, Chuang MT, et al. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT[J]. Radiology, 2013, 269(2): 525-533.
[29]Li X, Kuo D, Schafer AL, et al. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis[J]. J Magn Reson Imaging, 2011, 33(4): 974-979.
[30]Bierry G, Venkatasamy A, Kremer S, et al. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI[J]. Skeletal Radiol, 2014, 43(4): 485-492.