|
|
Correlation analysis of fetal chromosome copy number variation and prenatal ultrasound abnormality |
TANG Zhong-feng, LIN Xiao-juan, YANG Lei, SONG Xiao-yu, WU Ju, DAI Wei-si, SUN Qing-mei |
Center of Prenatal Diagnosis Gansu Provincial Maternity and Child Health Care Hospital, Lanzhou 730050, China |
|
|
Abstract Objective: To investigate the correlation between abnormal structure of prenatal ultrasound and chromosome copy number variation(CNV), so as to provide a suitable prenatal diagnosis strategy for pregnant women with abnormal structure in pregnancy. Methods: A retrospective analysis was carried out in 837 pregnant women with high throughput sequencing of chromosomes in our hospital. Through different prenatal diagnostic indications, the correlation between abnormal structural indications of ultrasound examination and the CNV of high throughput sequencing in pregnancy was evaluated. Results: The gestational ultrasonic indications in the CNV of high throughput sequencing were 79.4%. Compared with the previous single fetal chromosome karyotype analysis, 4.1% chromosomal abnormalities could be found by high throughput sequencing CNV detection. Conclusion: The abnormal ultrasound structure during pregnancy or the soft indexes of multiple ultrasound suggests the analysis of fetal chromosome karyotype and high throughput sequencing CNV detection is necessary, which can improve the prenatal diagnosis rate and decrease the incidence of birth defects.
|
Received: 03 September 2018
|
|
|
|
|
[1]de Wit MC, Srebniak MI, Govaerts LC, et al. Additional value of prenatal genomic array testing in fetuses with isolated structural ultrasound abnormalities and a normal karyotype: a systematic review of the literature[J]. Ultrasound Obstet Gynecol, 2014, 43(2): 139-146.
[2]Srebniak MI, Diderich KE, Joosten M, et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: causative, unexpected and susceptibility CNVs[J]. Eur J Hum Genet, 2016, 24(5): 645-651.
[3]de Wit MC, Boekhorst F, Mancini GM, et al. Advanced genomic testing may aid in counseling of isolated agenesis of the corpus callosum on prenatal ultrasound[J]. Prenat Diagn, 2017, 37(12): 1191-1197.
[4]Lovrecic L, Remec ZI, Volk M, et al. Clinical utility of array comparative genomic hybridisation in prenatal setting[J]. BMC Med Genet, 2016, 17(1): 81.
[5]李胜利. 胎儿畸形产前超声诊断学[M]. 北京:人民军医出版社,2004:123-589.
[6]Nicolaides KH, Azar G, Byrne D, et al. Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of regnancy[J]. BMJ, 1992, 304(6381): 867-869.
[7]边旭明,朱宝生,刘俊涛,等. 胎儿常见染色体异常与开放性神经管缺陷的产前筛查与诊断技术标准第2部分:胎儿染色体异常的细胞遗传学产前诊断技术标准[J]. 中国产前诊断杂志:电子版,2011,3(4):46-50.
[8]South ST, Lee C, Lamb AN, et al. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013[J]. Genet Med, 2013, 15(11): 901-909.
[9]Nicolaides KH. Screening for chromosomal defects[J]. Ultrasound Obstet Gynecol, 2003, 21(4): 313-321.
[10]商梅娇,周祎,鲁云涯,等. 122例胎儿肾盂扩张与染色体非整倍体的关联性分析[J]. 中山大学学报:医学科学版,2013,34(1):99-103.
[11]Steele M, Breg WR Jr. Chromosome analysis of human amniotic-fluid cells[J]. Lancet, 1966, 1(7434): 383-385.
[12]Gao J. Clinical investigation of chromosomal karyotype analysis in cells cultured from fetal bladder puncture liquid[J]. Exp Ther Med, 2017, 14(3): 1879-1883.
[13]朱蕊,曾爱群,杜晶春. 高危孕妇572例妊娠中期羊水细胞染色体核型分析[J]. 实用医学杂志,2016,32(18):3050-3052.
[14]马京梅,杨慧霞. 染色体微阵列技术在产前诊断中的应用[J]. 中国实用妇科与产科杂志,2014,30(8):648-651.
[15]Jansen FA, Blumenfeld YJ, Fisher A, et al. Array Comparative Genomic Hybridization and Fetal Congenital Heart Defects—A systematic review and meta-analysis[J]. Ultrasound Obstet Gynecol, 2015, 45(1): 27-35.
[16]Reddy UM, Page GP, Saade GR, et al. Karyotype versus Micro-array Testing for Genetic Abnormalities after Stillbirth[J]. N Engl J Med, 2012, 367(23): 2185-2193. |
|
|
|