|
|
A resting-state functional MRI study based on regional homogeneity in Parkinson’s disease |
Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China |
|
|
Abstract Objective: To investigate the changes of regional homogeneity in patients with Parkinson’s disease(PD), to study the central pathophysiological changes of PD. Methods: Totally 35 patients with PD and 31 normal persons as normal controls(NC) underwent resting-state BOLD-fMRI examination. The fMRI data were processed and analysed by DPARSF V2.0 soft and REST V1.8 soft. The Reho differences between PD group and NC group was statistically analyzed. Results: Compared with NC group, PD group had significantly increased Reho values in extensive brain regions including the right precuneus, left paracentral lobule, left interior frontal gyrus, left cerebellum posterior lobe; and the decreased regional activity in the right cerebellum posterior lobe, right lingual gyrus, right middle temporal gyrus, right inferior frontal gyrus, right middle occipital gyrus, right superior frontal gyrus, right precentral gyrus, left putamen, left middle occipital gyrus(P<0.05, K>29, AlphaSim corrected). Conclusions: The changes of Reho value in resting-state brain functional MRI of PD patients are extensive. The abnormal areas of neuronal activity included extensive cortex of striatal-thalamo-corti-cal loops, the default network key nodes, supplementary motor area and other parts.
|
Received: 18 May 2015
|
|
|
|
|
[1]Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage, 2004, 22(2): 394-400.
[2]Hughes AJ, Daniel SE, Kilford L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases[J]. J Neurol Neurosurg Psychiatry, 1992, 55(3): 181-184.
[3]Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI[J]. Front Syst Neurosci, 2010, 4: 13.
[4]Song XW, Dong ZY, Long XY, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing[J]. PLoS One, 2011, 6(9): e25031.
[5]Mhyre TR, Boyd JT, Hamill RW, et al. Parkinson’s disease[J]. Subcell Biochem, 2012, 65: 389-455.
[6]Wu T, Long X, Zang Y, et al. Regional homogeneity changes in patients with Parkinson’s disease[J]. Hum Brain Mapp, 2009, 30(5): 1502-1510.
[7]Fogelson N, Williams D, Tijssen M, et al. Different functional loops between cerebral cortex and the subthalmic area in Parkinson’s disease[J]. Cereb Cortex, 2006, 16(1): 64-75.
[8]Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson’s disease[J]. Brain, 2005, 128(Pt 10): 2250-2259.
[9]贾建平. 神经病学[M]. 2版. 北京:人民卫生出版社,2009:23-24.
[10]Yu H, Sternad D, Corcos DM, et al. Role of hyperactive cerebellum and motor cortex in Parkinson’s disease[J]. Neuroimage, 2007, 35(1): 222-233.
[11]刘虎,范国光,徐克,等. 帕金森病患者静息态下脑活动的局部一致性[J]. 中国医学影像技术,2011,27(10):1167-1171.
[12]Hilker R, Voges J, Weisenbach S, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease[J]. J Cereb Blood Flow Metab, 2004, 24(1): 7-16.
[13]Lewis MM, Slagle CG, Smith AB, et al. Task specific influences of Parkinson’s disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries[J]. Neuroscience, 2007, 147(1): 224-235.
[14]Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis[J]. Hum Brain Mapp, 2005, 26(1): 15-29.
[15]Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis[J]. Proc Natl Acad Sci U S A, 2003, 100(1): 253-258.
[16]De Luca M, Beckmann CF, De Stefano N, et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain[J]. Neuroimage, 2006, 29(4): 1359-1367.
[17]van Eimeren T, Monchi O, Ballanger B, et al. Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study[J]. Arch Neurol, 2009, 66(7): 877-883.
[18]Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease[J]. Neurobiol Aging, 2003, 24(2): 197-211.
[19]Krajcovicova L, Mikl M, Marecek R, et al. The default mode network integrity in patients with Parkinson’s disease is levodopa equivalent dose-dependent[J]. J Neural Transm, 2011, 119(4): 443-454. |
|
|
|