摘要应用彩色多普勒超声与Snake模型图像分析软件,探讨超声灰度值定量分析对早产儿脑室周围白质软化(Periventricular leukomalacia,PVL)诊断的价值。方法:对生后7 d内临床诊断为PVL的早产儿120例及正常新生儿对照组80例进行常规颅脑超声检查,根据超声图像的灰度解剖分布,利用Snake模型图像分析软件自动提取实验感兴趣区,用“手动分析”进行边缘修正,从而提取被确定的5个感兴趣区(ROIs):基底节区、侧脑室前角旁脑白质、侧脑室后角旁脑白质、脉络丛和小脑蚓部。每个ROI标准切面连续录2幅图像进行数字化存储,用于离线分析,将每个相应结构的ROI描绘出来,并计算其平均的超声灰度值。对120例PVL早产儿实验数据进行可重复性(图像分析软件变异,EV)及可再现性(测量者变异,AV)的分析,用95%可信区间来反映其变异程度。结果:PVL患儿基底节区、侧脑室前角旁脑白质及侧脑室后角旁脑白质平均灰度值分别为130.64±4.12、131.35±3.02、133.46±2.94,高于对照组(92.51±6.89、81.64±2.78、85.75±3.65),差异有统计学意义(μ=44.49、119.78、97.57,P<0.01);PVL患儿脉络丛、小脑蚓部平均灰度值分别为132.90±4.88、132.25±2.56,与对照组(131.98±5.82、131.43±4.47)无显著性差异。PVL患儿重复性EV为2.70%,再现性AV为0.56%,总的重复性及再现性变异(Repeatability and reproducibility,R&R)为2.70%。结论:Snake模型脑组织灰度值定量分析评估,为临床早期诊断早产儿脑室周围白质软化提供了可靠的方法。
Abstract:Objective: To explore the value of quantified analysis of periventricular leukomalacia(PVL) using color Doppler ultrasound and Snake model medical image analysis software. Methods: The cranial ultrasound examination was performed in 120 premature infants with PVL within 7 days after birth. And 80 newborns were taken as control group. According to the gray anatomic distribution of ultrasound images, using the “manual analysis” to fix edge, five regions-of-interest(ROIs) were identified: basal ganglia, area around the anterior horn of lateral ventricle, area around cornu posterious ventriculi lateralis, choroid plexus and cerebellar vermis. Two consecutive images from each ROI were digitally stored. For off-line analysis, the ROI corresponding to each structure was delineated and the average gray value was calculated. Reproducibility of the experimental data(image analysis software variation, EV) and reproducibility(variation measurer, AV) were analyzed, with 95% confidence intervals to reflect its variability for 120 cases of premature infants with PVL. Results: The average gray values of basal ganglia, area around the anterior horn of lateral ventricle, area around cornu posterious ventriculi lateralis in premature infants with PVL were 130.64±4.12, 131.35±3.02 and 133.46±2.94, respectively, higher than those in control group(92.51±6.89, 81.64±2.78 and 85.75±3.65)(μ=44.49, 119.78, 97.57, P<0.01). The average gray values in choroid plexus and cerebellar vermis of PVL premature infants were 132.90±4.88 and 132.25±2.56, respectively, with no significant difference with control group(131.98±5.82, 131.43±4.47). The repeatability EV was 2.70%, reproducibility AV was 0.56%, and the repeatability and reproducibility(R&R) was 2.70% for premature infants with PVL. Conclusion: Quantitative analysis of ultrasonographic gray value of premature infants with PVL is characteristic by Snake model medical image analysis software, which can provide important information in the early diagnosis and in evaluating the prognosis of this disease.
贺雪华,关步云,朱莉玲. 靶Snake模型在早产儿脑室周围白质软化超声诊断中的应用研究[J]. 中国临床医学影像杂志, 2016, 27(12): 842-846.
HE Xue-hua, GUAN Bu-yun, ZHU Li-ling. Ultrasonic diagnosis of premature infant with periventricular leukomalacia by Snake model software. JOURNAL OF CHINA MEDICAL IMAGING, 2016, 27(12): 842-846.
[1]Schmidt B, Roberts RS, Davis PG, et al. Prediction of Late Death or Disability at Age 5 Years Using a Count of 3 Neonatal Morbidities in Very Low Birth Weight Infants[J]. J Pediatr, 2015, 167(5): 982-986.
[2]Haak A, Vegas-Sánchez-Ferrero G, Mulder HW, et al. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2015, 62(6): 1179-1189.
[3]黄建波,倪东,汪天富. 基于先验概率和统计形状的前列腺超声图像自动分割方法[J]. 生物医学工程研究,2015,34(1):15-19.
[4]de Vries LS, Benders MJ, Groenendaal F. Progress in Neonatal Neurology with a Focus on Neuroimaging in the Preterm Infant[J]. Neuropediatrics, 2015, 46(4): 234-241.
[5]Cho SJ, Shin J, Namgung R. Initial Resuscitation at Delivery and Short Term Neonatal Outcomes in Very-Low-Birth-Weight Infants[J]. J Korean Med Sci, 2015, 30(Suppl 1): S45-51.
[6]Benders MJ, Kersbergen KJ, de Vries LS. Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage[J]. Clin Perinatol, 2014, 41(1): 69-82.
[7]de Vries LS, Volpe JJ. Value of sequential MRI in preterm infants[J]. Neurology, 2013, 81(24): 2062-2063.
[8]Narchi H, Mahmoud-Ghoneim D, Skinner A, et al. Texture analysis of periventricular echogenicity on neonatal cranial ultrasound predicts periventricular leukomalacia[J]. J Neonatal Perinatal Med, 2013, 6(2): 117-124.
[9]Kwon SH, Vasung L, Ment LR, et al. The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates[J]. Clin Perinatol, 2014, 41(1): 257-283.
[10]Zhang D, Xu M, Quan L, et al. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding[J]. Phys Med Biol, 2015, 60(5): 1807-1830.
[11]Marty B, Larrat B, Van Landeghem M, et al. Dynamic study of blood-brain barrier closure after its disruption using ultrasound: a quantitative analysis[J]. J Cereb Blood Flow Metab, 2012, 32(10): 1948-1958.
[12]张玲,周鹏翔,符颖,等. 经颅彩色多普勒超声对帕金森病早期诊断的研究[J]. 中国医学计算机成像杂志,2014,20(3):267-270.
[13]朱德喜,王耀增,陈绮,等. RTVue傅里叶OCT测量泪新月参数的重复性和再现性评价[J]. 中华实验眼科杂志,2014,32(12):1092-1096.