Abstract: In recent years, amide proton transfer(APT) imaging, as a new modality of MR imaging, has attracted more and more attention in clinical applications. APT imaging can detect the exchange characteristics of amide protons in free proteins and peptides and water protons by means of water signal changes. APT imaging can reflect tumor, stroke, neonatal hypoxic-ischemic encephalopathy related to protein and pH at the molecular level. In addition to the nervous system, APT imaging has now been used in several other systems. APT imaging, as an in vivo, noninvasive, cellular and molecular level MR imaging modality without exogenous contrast agents, can provide more information for clinical studies and will be further developed in future studies.
王晓明,郑 阳. 酰胺质子转移成像的临床应用及挑战[J]. 中国临床医学影像杂志, 2017, 28(10): 692-696.
WANG Xiao-ming, ZHENG Yang. Clinical application and challenges of amide proton transfer imaging. JOURNAL OF CHINA MEDICAL IMAGING, 2017, 28(10): 692-696.
[1]Zhou J, Lal B, Wilson DA, et al. Amide proton transfer(APT) contrast for imaging of brain tumors[J]. Magn Reson Med, 2003, 50(6): 1120-1126.
[2]Zhou J, Payen JF, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090.
[3]Kauppinen RA, Kokko H, Williams SR. Detection of mobile proteins by proton nuclear magnetic resonance spectroscopy in the guinea pig brain ex vivo and their partial purification[J]. J Neurochem, 1992, 58(3): 967-974.
[4]Jokivarsi KT, Grohn HI, Grohn OH, et al. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia[J]. Magn Reson Med, 2007, 57(4): 647-653.
[5]Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[J]. Physiol Rev, 2001, 81(2): 871-927.
[6]Deng W, Poretz RD. Oligodendroglia in developmental neurotoxicity[J]. Neurotoxicology, 2003, 24(2): 161-178.
[7]Bradl M, Lassmann H. Oligodendrocytes: biology and pathology[J]. Acta Neuropathol, 2010, 119(1): 37-53.
[8]Zheng Y, Wang X, Zhao X. Magnetization Transfer and Amide Proton Transfer MRI of Neonatal Brain Development[J]. Biomed Res Int, 2016, 2016: 3052723.
[9]Zhang H, Kang H, Zhao X, et al. Amide Proton Transfer(APT) MR imaging and Magnetization Transfer(MT) MR imaging of pediatric brain development[J]. Eur Radiol, 2016, 26(10): 3368-3376.
[10]Plum F, Price RW. Acid-base balance of cisternal and lumbar cerebrospinal fluid in hospital patients[J]. N Engl J Med, 1973, 289(25): 1346-1351.
[11]Kazemi H, Johnson DC. Regulation of cerebrospinal fluid acid-base balance[J]. Physiol Rev, 1986, 66(4): 953-1037.
[12]Siesjo BK, Katsura K, Mellergard P, et al. Acidosis-related brain damage[J]. Prog Brain Res, 1993, 96: 23-48.
[13]Richardson AJ, Cox IJ, Sargentoni J, et al. Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy[J]. NMR Biomed, 1997, 10(7): 309-314.
[14]郑阳,王晓明. 磁化传递成像和酰胺质子转移联合评价新生儿脑损伤的初步研究[J]. 磁共振成像,2017,8(3):189-195.
[15]Zheng Y, Wang XM. Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI[J]. Am J Neuroradiol, 2017, 38(4): 827-834.
[16]Sun PZ, Zhou J, Sun W, et al. Detection of the ischemic penumbra using pH-weighted MRI[J]. J Cereb Blood Flow Metab, 2007, 27(6): 1129-1136.
[17]Song G, Li C, Luo X, et al. Evolution of Cerebral Ischemia Assessed by Amide Proton Transfer-Weighted MRI[J]. Front Neurol, 2017, 8: 67.
[18]Harston GW, Tee YK, Blockley N, et al. Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging[J]. Brain, 2015, 138(Pt 1): 36-42.
[19]Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides[J]. Nat Med, 2011, 17(1): 130-134.
[20]Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2014, 16(3): 441-448.
[21]Sakata A, Fushimi Y, Okada T, et al. Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors[J]. J Magn Reson Imaging, 2017. [Epub ahead of print].
[22]Mehrabian H, Desmond KL, Soliman H, et al. Differentiation between Radiation Necrosis and Tumor Progression Using Chemical Exchange Saturation Transfer[J]. Clin Cancer Res, 2017, 23(14): 3667-3675.
[23]Bai Y, Lin Y, Zhang W, et al. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas[J]. Oncotarget, 2017, 8(4): 5834-5842.
[24]Wang R, Li SY, Chen M, et al. Amide proton transfer magnetic resonance imaging of Alzheimer’s disease at 3.0 Tesla: a preliminary study[J]. Chin Med J (Engl), 2015, 128(5): 615-619.
[25]Wells JA, O’Callaghan JM, Holmes HE, et al. In vivo imaging of tau pathology using multi-parametric quantitative MRI[J]. Neuroimage, 2015, 111: 369-378.
[26]Li C, Wang R, Chen H, et al. Chemical Exchange Saturation Transfer MR Imaging is Superior to Diffusion-Tensor Imaging in the Diagnosis and Severity Evaluation of Parkinson’s Disease: A Study on Substantia Nigra and Striatum[J]. Front Aging Neurosci, 2015, 7: 198.
[27]Klomp DW, Dula AN, Arlinghaus LR, et al. Amide proton transfer imaging of the human breast at 7T: development and reproducibility[J]. NMR Biomed, 2013, 26(10): 1271-1277.
[28]Jia G, Abaza R, Williams JD, et al. Amide proton transfer MR imaging of prostate cancer: a preliminary study[J]. J Magn Reson Imaging, 2011, 33(3): 647-654.
[29]Zhou J, Payen JF, van Zijl PC. The interaction between magnetization transfer and blood-oxygen-level-dependent effects[J]. Magn Reson Med, 2005, 53(2): 356-366.
[30]Liu D, Zhou J, Xue R, et al. Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 tesla[J]. Magn Reson Med, 2013, 70(4): 1070-1081.
[31]Scheidegger R, Vinogradov E, Alsop DC. Amide proton transfer imaging with improved robustness to magnetic field inhomogeneity and magnetization transfer asymmetry using saturation with frequency alternating RF irradiation[J]. Magn Reson Med, 2011, 66(5): 1275-1278.