Abstract:Objective: To study the value of whole tumors enhanced MRI gray histogram analysis of differential diagnosis in three common pediatric posterior fossa tumors(ependymoma, astrocytoma, medulloblastoma). Methods: A retrospective analysis was conducted by brain MRI examination and pathology diagnosis of 76 cases of posterior fossa tumors in children in our hospital. Among them, there were 25 cases of ependymoma, 26 cases of astrocytoma, 25 cases of medulloblastoma. Respectively, we drew the region of interest(ROI) in the enhanced MR sagittal images of three groups on each layer of tumor level by using Mazda software and analyzed the whole tumors gray histogram, then performed statistical analysis on the three sets of parameters obtained from histograms to find out statistical difference of each parameter. Results: Through histogram analysis of 9 parameters, the difference of these 6 parameters were statistically significant(all P<0.05), including mean, variance, skewness, Perc.10%, Perc.50% and Perc.99%, the remaining 3 parameters, including kurtosis, Perc.01%, Perc.90% had no significant difference(all P>0.05). Conclusion: The MRI gray histogram analysis based on whole tumors is helpful for the identification of three kinds of pediatric posterior fossa tumors,the Perc.50% and variance had a high diagnostic efficiency.
许 珂,张 勇,程敬亮,朱晨迪,汪卫建. MRI增强全域灰度直方图在鉴别儿童后颅窝肿瘤的应用[J]. 中国临床医学影像杂志, 2019, 30(3): 153-157.
XU Ke, ZHANG Yong, CHENG Jing-liang, ZHU Chen-di, WANG Wei-jian. Application of whole-tumor histogram analysis of enhanced MRI for posterior fossa tumors in children. JOURNAL OF CHINA MEDICAL IMAGING, 2019, 30(3): 153-157.
[1]Orphanidou-Vlachou E, Vlachos N, Davies NP, et al. Texture analysis of T1- and T2-weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumors in children[J]. NMR Biomed, 2014, 27(6): 632-639.
[2]李娅,李蒙蒙,张勇,等. 磁共振图像的纹理分析在儿童常见后颅窝肿瘤鉴别诊断中的应用[J]. 中华医学杂志,2016,96(23):1853-1856.
[3]Umanodan T, Fukukura Y, Kumagae Y, et al. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma[J]. J Magn Reson Imaging, 2017, 45(4): 1195-1203.
[4]Jung SC, Yeom JA, Kim JH, et al. Glioma: Application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading[J]. AJNR, 2014, 35(6): 1103-1110.
[5]Wang S, Kim S, Zhang Y, et al. Determination of grade and subtype of meningiomas by using histogram analysis of diffusion-tensor imaging metrics[J]. Radiology, 2012, 262(2): 584-592.
[6]Gutierrez DR, Awwad A, Meijer L, et al. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors[J]. AJNR, 2014, 35(5): 1009-1015.
(下转161页)
(上接157页)
[7]Xu XQ, Li Y, Hong XN, et al. Radiological in determinate vestibular Schwannoma and meningioma in cerebellopontine angle area: differentiating using whole-tumor histogram analysis of apparent diffusion coefficient[J]. Int J Neurosci, 2017, 127(2): 183-190.
[8]Ryu YJ, Choi SH, Park SJ, et al. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity[J]. PLoS One, 2014, 30(9): e108335.
[9]Bull JG, Saunders DE, Clark CA. Discrimination of pediatric brain tumors using apparent diffusion coefficient histograms[J]. Eur Radiol, 2012, 22(2): 447-457.
[10]邓小林,文明,吴晓凤,等. ADC比值鉴别诊断儿童后颅窝肿瘤[J]. 中国医学影像技术,2015,31(11):1620-1624.
[11]Catalaa I, Henry R, Dillon WP, et al. Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas[J]. NMR Biomed, 2006, 19(4): 463-475.
[12]刘杨颖秋,尚劲,田诗云,等. 利用肿瘤全域表观扩散系数信号强度直方图鉴别Ⅱ级与Ⅲ级胶质瘤[J]. 磁共振成像,2017,8(4):276-282.
[13]陈鑫,魏新华,杨蕊梦,等. 常规MRI纹理分析鉴别脑胶质母细胞瘤和单发转移瘤的价值[J]. 中华放射学杂志,2016,50(3):186-190.
[14]Lu SS, Kim SJ, Kim N, et al. Histogram analysis of apparent diffusion coefficient maps for differentiating primary CNS lymphomas from tumefactive demyelinating lesions[J]. AJR, 2015, 204(4): 827-834.
[15]Wagner MW, Narayan AK, Bosemani T, et al. Histogram analysis of diffusion tensor imaging parameters in pediatric cerebellar tumors[J]. J Neuroimaging, 2016, 26(3): 360-365.