Abstract:Depression is a globally prevalent psychiatric disorder. Nuclear medicine functional imaging of the brain is the first imaging method applied in depression research, which can demonstrate the abnormalities of cerebral blood flow perfusion, cerebral metabolism, and the distribution and function of neuroreceptors, etc. With the development of nuclear medicine device and the appearance of multimodal imaging system, nuclear medicine imaging will play an even more important role in exploring pathogenesis, developing new technologies for early diagnosis and therapy monitoring of depression.
李金明,杨 渊,陈 璟. 抑郁症核医学脑功能显像的进展[J]. 中国临床医学影像杂志, 2016, 27(10): 739-743.
LI Jin-ming, YANG Yuan, CHEN Jing. Progress of nuclear medicine brain functional imaging in depression. JOURNAL OF CHINA MEDICAL IMAGING, 2016, 27(10): 739-743.
[1]Fava M, Kendler KS. Major depressive disorder[J]. Neuron, 2000, 28(2): 335-341.
[2]Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication(NCS-R)[J]. JAMA, 2003, 289(23): 3095-3105.
[3]Kim E, Howes OD, Kapur S. Molecular imaging as a guide for the treatment of central nervous system disorders[J]. Dialogues Clin Neurosci, 2013, 15(3): 315-328.
[4]Nagafusa Y, Okamoto N, Sakamoto K, et al. Assessment of cerebral blood flow findings using 99mTc-ECD single-photon emission computed tomography in patients diagnosed with major depressive disorder[J]. J Affect Disord, 2012, 140(3): 296-299.
[5]Takahashi S, Ukai S, Tsuji T, et al. Cerebral blood flow in the subgenual anterior cingulate cortex and modulation of the mood-regulatory networks in a successful rTMS treatment for major depressive disorder[J]. Neurocase, 2013, 19(3): 262-267.
[6]Watanabe M, Umezaki Y, Miura A, et al. Comparison of cerebral blood flow in oral somatic delusion in patients with and without a history of depression: a comparative case series[J]. BMC Psychiatry, 2015, 15(1): 1-10.
[7]Liang X, Zou Q, He Y, et al. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain[J]. Proc Natl Acad Sci USA, 2013, 110(5): 1929-1934.
[8]Goodwin GM. Neuropsychological and neuroimaging evidence for the involvement of the frontal lobes in depression[J]. J Psychopharmacol, 1997, 11(2): 115-122.
[9]冀二妮,关念红,王厚亮,等. 单、双相抑郁患者脑血流灌注特征及其与认知功能的相关性[J]. 中华行为医学与脑科学杂志,2011,20(4):330-332.
[10]Baldacara L, Borgio JG, Lacerda AL, et al. Cerebellum and psychiatric disorders[J]. Rev Bras Psiquiatr, 2008, 30(3): 281-289.
[11]Savitz J, Nugent AC, Cannon DM, et al. Effects of arterial cannulation stress on regional cerebral blood flow in major depressive disorder[J]. Sci Rep, 2012, 2: 308.
[12]Videbech P, Ravnkilde B, Pedersen AR, et al. The Danish PET/depression project: PET findings in patients with major depression[J]. Psychol Med, 2001, 31(7): 1147-1158.
[13]Monkul ES, Silva LA, Narayana S, et al. Abnormal resting state corticolimbic blood flow in depressed unmedicated patients with major depression: a (15)O-H(2)O PET study[J]. Hum Brain Mapp, 2012, 33(2): 272-279.
[14]Videbech P, Ravnkilde B, Pedersen TH, et al. The Danish PET/depression project: clinical symptoms and cerebral blood flow. A regions-of-interest analysis[J]. Acta Psychiatr Scand, 2002, 106(1): 35-44.
[15]Brockmann H, Zobel A, Joe A, et al. The value of HMPAO SPECT in predicting treatment response to citalopram in patients with major depression[J]. Psychiatry Res, 2009, 173(2): 107-112.
[16]Kohn Y, Freedman N, Lester H, et al. Cerebral perfusion after a 2-year remission in major depression[J]. Int J Neuropsychopharmacol, 2008, 11(6): 837-843.
[17]Dunn RT, Kimbrell TA, Ketter TA, et al. Principal components of the Beck Depression Inventory and regional cerebral metabolism in unipolar and bipolar depression[J]. Biol Psychiatry, 2002, 51(5): 387-399.
[18]Kimbrell TA, Ketter TA, George MS, et al. Regional cerebral glucose utilization in patients with a range of severities of unipolar depression[J]. Biol Psychiatry, 2002, 51(3): 237-252.
[19]Su L, Cai Y, Xu Y, et al. Cerebral metabolism in major depressive disorder: a voxel-based Meta-analysis of positron emission tomography studies[J]. BMC Psychiatry, 2014, 14(1): 1-7.
[20]Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism[J]. Eur Neuropsychopharmacol, 2002, 12(6): 527-544.
[21]McGrath CL, Kelley ME, Holtzheimer PE, et al. Toward a neuroimaging treatment selection biomarker for major depressive disorder[J]. JAMA Psychiatry, 2013, 70(8): 821-829.
[22]Baeken C, Marinazzo D, Everaert H, et al. The Impact of Accelerated HF-rTMS on the Subgenual Anterior Cingulate Cortex in Refractory Unipolar Major Depression: Insights From 18FDG PET Brain Imaging[J]. Brain Stimul, 2015, 8(4): 808-815.
[23]Ottowitz WE, Deckersbach T, Savage CR, et al. Neural correlates of strategic processes underlying episodic memory in women with major depression: A 15O-PET study[J]. J Neuropsychiatry Clin Neurosci, 2010, 22(2): 218-230.
[24]Savitz JB, Drevets WC. Neuroreceptor imaging in depression[J]. Neurobiol Dis, 2013, 52: 49-65.
[25]Boldrini M, Underwood MD, Mann JJ, et al. Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides[J]. J Psychiatr Res, 2008, 42(6): 433-442.
[26]Fisher PM, Meltzer CC, Ziolko SK, et al. Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity[J]. Nat Neurosci, 2006, 9(11): 1362-1363.
[27]Baeken C, De Raedt R, Bossuyt A. Is treatment-resistance in unipolar melancholic depression characterized by decreased serotonin(2)A receptors in the dorsal prefrontal-anterior cingulate cortex?[J]. Neuropharmacology, 2012, 62(1): 340-346.
[28]Baeken C, De Raedt R, Bossuyt A, et al. The impact of HF-rTMS treatment on serotonin(2A) receptors in unipolar melancholic depression[J]. Brain Stimul, 2011, 4(2): 104-111.
[29]Murrough JW, Henry S, Hu J, et al. Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major depressive disorder[J]. Psychopharmacology(Berl), 2011, 213(2-3): 547-553.
[30]Anisman H, Du L, Palkovits M, et al. Serotonin receptor subtype and p11 mRNA expression in stress-relevant brain regions of suicide and control subjects[J]. J Psychiatry Neurosci, 2008, 33(2): 131-141.
[31]Newberg AB, Amsterdam JD, Wintering N, et al. Low brain serotonin transporter binding in major depressive disorder[J]. Psychiatry Res, 2012, 202(2): 161-167.
[32]Erritzoe D, Frokjaer VG, Haahr MT, et al. Cerebral serotonin transporter binding is inversely related to body mass index[J]. Neuroimage, 2010, 52(1): 284-289.
[33]Amsterdam JD, Newberg AB, Newman CF, et al. Change over time in brain serotonin transporter binding in major depression: effects of therapy measured with [(123)I]-ADAM SPECT[J]. J Neuroimaging, 2013, 23(4): 469-476.
[34]Hsieh PC, Chen KC, Yeh TL, et al. Lower availability of midbrain serotonin transporter between healthy subjects with and without a family history of major depressive disorder-a preliminary two-ligand SPECT study[J]. Eur Psychiatry, 2014, 29(7): 414-418.
[35]Miller JM, Hesselgrave N, Ogden RT, et al. Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder[J]. Biol Psychiatry, 2013, 74(4): 287-295.
[36]Dougherty DD, Bonab AA, Ottowitz WE, et al. Decreased striatal D1 binding as measured using PET and [11C]SCH 23,390 in patients with major depression with anger attacks[J]. Depress Anxiety, 2006, 23(3): 175-177.
[37]Cannon DM, Klaver JM, Peck SA, et al. Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [11C]NNC-112[J]. Neuropsychopharmacology, 2009, 34(5): 1277-1287.
[38]Yang YK, Yeh TL, Yao WJ, et al. Greater availability of dopamine transporters in patients with major depression—a dual-isotope SPECT study[J]. Psychiatry Res, 2008, 162(3): 230-235.
[39]de Kwaasteniet BP, Pinto C, Ruhe HG, et al. Striatal dopamine D2/3 receptor availability in treatment resistant depression[J]. PLoS One, 2014, 9(11): e113612.
[40]Lehto SM, Kuikka J, Tolmunen T, et al. Temporal cortex dopamine D2/3 receptor binding in major depression[J]. Psychiatry Clin Neurosci, 2008, 62(3): 345-348.
[41]Meyer JH, McNeely HE, Sagrati S, et al. Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study[J]. Am J Psychiatry, 2006, 163(9): 1594-1602.
[42]Koerts J, Leenders KL, Koning M, et al. Striatal dopaminergic activity(FDOPA-PET) associated with cognitive items of a depression scale(MADRS) in Parkinson’s disease[J]. Eur J Neurosci, 2007, 25(10): 3132-3136.
[43]Di Giuda D, Camardese G, Cocciolillo F, et al. Dopaminergic dysfunction and psychiatric symptoms in movement disorders: a 123I-FP-CIT study: reply to comment by Erro et al[J]. Eur J Nucl Med Mol Imaging, 2013, 40(4): 638-639.
[44]Amsterdam JD, Newberg AB, Soeller I, et al. Greater striatal dopamine transporter density may be associated with major depressive episode[J]. J Affect Disord, 2012, 141(2-3): 425-431.
[45]Meyer JH, Kruger S, Wilson AA, et al. Lower dopamine transporter binding potential in striatum during depression[J]. Neuroreport, 2001, 12(18): 4121-4125.
[46]Conway CR, Chibnall JT, Cumming P, et al. Antidepressant response to aripiprazole augmentation associated with enhanced FDOPA utilization in striatum: a preliminary PET study[J]. Psychiatry Res, 2014, 221(3): 231-239.
[47]Meyer JH, Wilson AA, Sagrati S, et al. Brain monoamine oxidase A binding in major depressive disorder: relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence[J]. Arch Gen Psychiatry, 2009, 66(12): 1304-1312.
[48]Hannestad JO, Cosgrove KP, DellaGioia NF, et al. Changes in the cholinergic system between bipolar depression and euthymia as measured with [123I]5IA single photon emission computed tomography[J]. Biol Psychiatry, 2013, 74(10): 768-776.
[49]Remy P, Doder M, Lees A, et al. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system[J]. Brain, 2005, 128(Pt 6): 1314-1322.