Diagnostic approach to childhood-onset cerebellar atrophy: retrospective study of 111 patients
ZHAO Fei1, XIAO Jiang-xi2, XIE Sheng3
1. Department of Imaging, Aerospace Central Hospital, Beijing 100049, China;
2. Peking University First Hospital, Beijing 100034, China; 3. China-Japan Friendship Hospital, Beijing 100029, China
Abstract:Objective: To propose a neuroradiological diagnostic approach for childhood-onset cerebellar atrophy. Method: MR images of 111 patients with cerebellar atrophy were analyzed(62 males, 49 females). Hierarchical clustering of patients on the basis of their MRI item profile was performed. Result: Diagnosis was established in 76 patients. Mitochondrial diseases were the most common, followed by NCL and INAD. Hierarchical clustering result showed Cluster 1 mainly contained mitochondrial diseases, Cluster 2 mainly included INAD and NCL, Cluster 3 mainly included wilson disease, Cluster 4 mainly included Cockayne syndrome and Cluster 5 mainly includied ALD, MLD and Menks disease. Other diseases were comprised in Cluster 6. Conclusion: The diagnostic approach to childhood-onset cerebellar atrophy requires integration of neuroimaging results with clinical information. The use of neuroimaging pattern recognition is extremely useful in differential diagnoses and in the selection of further investigations.
[1]Valanne L, Ketonen L, Majander A, et al. Neuroradiologic findings in children with mitochondrial disorders[J]. Am J Neuroradiol, 1998, 19(2): 369-377.
[2]Barkovich A, Good W, Koch T, et al. Mitochondrial disorders: analysis of their clinical and imaging characteristics[J]. Am J Neuroradiol, 1993, 14(5): 1119-1137.
[3]Sue CM, Crimmins DS, Soo YS, et al. Neuroradiological features of six kindreds with MELAS tRNAlLeuA3243G point mutation: implications for pathogenesis[J]. Neurol Neurosurg Psychiatry, 1998, 65(2): 233-240.
[4]Matthews P, Tampieri D, Berkovich S, et al. Magnetic resonance imaging shows specific abnormalities in the MELAS syndrome[J]. Neurology, 1991, 41(7): 1043-1046.
[5]Jabado N, Concannon P, Gatti RA. Ataxia-telangiectasia, a neurodegenerative disorder[M]//Klockgether T, Robertson NP, Muszaimi MB, et al. Handbook of Ataxia Disorders. New York: Marcel DEKKER, 2000: 163-190.
[6]Perlman S, Becker-Catalina S, Gatti R. Ataxia-telangiectasia: diagnosis and treatment[J]. Semin Pediatr Neurol, 2003, 10(3): 173-182.
[7]Farina L, Yggetti C, Ottolini A, et al. Ataxia-telangiectasia: MR and CT findings[J]. J Comput Assist Tomogr, 1994, 18(5): 724-727.
[8]Tavani F, Zimmerman RA, Berry GT, et al. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI[J]. Neuroradiology, 2003, 45(5): 315-319.
[9]Ginestroni A, Della Nave R, Tessa C, et al. Brain structural damage in spinocerebellar ataxia type 1: A VBM study[J]. J Neurol, 2008, 255(8): 1153-1158.
[10]Luks C, Schols L, Bellenberg B, et al. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study[J]. Neuro Sci Lett, 2006, 408(3): 230-235.
[11]Koskinen T, Valanne L, Ketonen LM, et al. (1995)Infantile-onset spinocerebellar ataxia: MRI and CT findings[J]. Am J Neuroradiol, 1995, 16(7): 1427-1433.
[12]Farina L, Nardocci N, Bruzzone MG, et al. Infantile neuroaxonal dystrophy: neuroradiological studies in 11 patients[J]. Neuroradiology, 1999, 41(5): 376-380.
[13]Biancheri R, Rossi A, Alpigiani G, et al. Cerebellar atrophy without cerebellar cortex hyperintensity in infantile neuroaxonal dystrophy due to PLA2G6 mutation[J]. Eur J Paediatr Neurol, 2007, 11(3): 175-177.
[14]Mader I, Krageloh-Mann I, Seeger U, et al. Proton MR spectroscopy reveals lactate in infantile neuroaxonal dystrophy[J]. Neuropediatrics, 2001, 32(2): 97-100.
[15]Harting I, Blaschek A, Wolf NI, et al. T2-hyperintense cerebellar cortex in Marinesco-Sj?觟gren syndrome[J]. Neurology, 2004, 63(12): 2448-2449.
[16]Georgh NA, Snow RD, Brogdon BG, et al. Neuroradiologic findings in Marinesco-Sj?觟gren syndrome[J]. Am J Neuroradiol, 1998, 19(2): 281-283.
[17]Sinha S, Taly AB, Ranishankar S, et al. Wilson’s disease: cranial MRI observations and clinical correlation[J]. Neuroradiology, 2006, 48(9): 613-621.
[18]Starosta-Rubinstein S, Young AB, Kluin K, et al. Clinical assessment of 31 patients with Wilson’s disease; Correlation with structural changes on magnetic rensonance imaging[J]. Arch Neurol, 1987, 44(4): 365-370.
[19]Imiya M, Ishikawa K, Matsushima H, et al. MR of the base of the pons in Wilson’s disease[J]. Am J Neuroradiol, 1992, 13(3): 1009-1012.
[20]Nazer H, Brismar J, AI-Kawi MZ, et al. Magnetic resonance imaging of the brain in Wilson’s disease[J]. Neuroradiology, 1993, 35(2): 130-133.
[21]Prayer L, Wimberger D, Karamer J, et al. Cranial MRI in Wilson’s disease[J]. Neuroradiology, 1990, 32(3): 211-214.
[22]Dunne E, Hyman NM, Huson SM, et al. A novel point mutation in X-linked adrenoleukodystrophy presenting as a spinocerebellar degeneration[J]. Ann Neurol, 1999, 45(5): 652-655.
[23]Marler JR, O’Neill BP, Forbes GS, et al. Adrenoleukodystrophy (ALD): clinical and CT features of a childhood varian[J]. Neurology, 1983, 33(9): 1203-1205.
[24]Kim JH, Kim HJ. Childhood X-linked adrenoleukodustrophy: Clinical pathologic Overview an MR Imaging Manifestations at Initial Evaluation and Follow up[J]. RadioGraphics, 2005, 25(3): 619-631.
[25]Kurihara M, Kumagai K, Yagishita S, et al. Adrenoleuko-myeloveuroplathy presenting as cerebellar ataxia in a young child: a probable variant of adrenoleukodystrophy[J]. Brain Dev, 1993, 15(5): 377-380.
[26]Sonninen P, Autti T, Varho T, et al. Brain involvement in Salla disease[J]. Am J Neuroradiol, 1999, 20(3): 433-443.
[27]D’Incerti L. MRI in neuronal ceroid lipofuscinosis[J]. Neurol Sci, 2000, 21(3 Suppl): S71-73.
[28]Seitz D, Grodd W, Schwab A, et al. MR imaging and localized proton MR spectroscopy in late infantile neuronal ceroid lipofuscinoses[J]. Am J Neuroradiology, 1998, 19(7): 1373-1377.
[29]Vanhanen SL, Raininko R, Autti T, et al. MRI evaluation of the brain in infantile neuronal ceroid-lipofuscinosis, 2: MRI findings in 21 patients[J]. J Child Neurol, 1995, 10(6): 444-450.
[30]Autti T, Raininko R, Vanhanen SL, et al. MRI of neuronal ceroid lipofuscinosis, I: cranial MRI of 30 patients with juvenile neuronal ceroid lipofuscinosis[J]. Neuroradiology, 1996, 38(5): 476-482.
[31]Weidenheim KM, Dickson DW, Tapin I. Neuropathology of Cockayne syndrome: evidence for impaired development, premature aging, and neurodegeneration[J]. Mech Ageing Dev, 2009, 130(9): 619-636.
[32]Boltshauser E, Yalcinkaya C, Wichmann W, et al. MRI in Cockayne syndrome type I[J]. Neuroradiology, 1989, 31(3): 276-277.
[33]Adachi M, Kawanami T, Ohshima F, et al. MR findings of cerebral white matter in Cockayne syndrome[J]. Magn Reson Med Sci, 2006, 5(1): 41-45.
[34]Sener RN. Pelizaeus-Merzbacher disease: diffusion MR imaging and proton MR spectroscopy findings[J]. J Neuroradiol, 2004, 31(2): 138-141.
[35]Seitelberger F. Neuropathology and genetics of Pelizaeus-Merzbacher disease[J]. J Neurosci, 1993, 5(3): 267-273.
[36]Van der Knaap MS, Valk J. The reflection of histology in MR imaging of Pelizaeus-Merzbacher disease[J]. Am J Neuroradiol, 1989, 10(1): 99-103.
[37]Kim TS, Kim IO, Kim WS, et al. MR of childhood metachromatic leukodystrophy[J]. Am J Neuroradiol, 1997, 18(4): 733-738.
[38]Chu BC, Terae S, Takahashi C, et al. MRI of the brain in the Kearns-Sayre syndrome: report of four cases and a reiew[J]. Neuroradiology, 1999, 41(10): 759-764.
[39]Geller TJ, Pan Y, Martin DS. Early neuroradiologic evidence of degeneration in Menkes’ disease[J]. Pediatr Neurol, 1997, 17(3): 255-258.
[40]Streifler JY, Gomish M, Hadar H, et al. Brain imaging in late-onset GM2 gangliosidosis[J]. Neurology, 1993, 430(10): 2055-2058.
[41]Kroll RA, Pagel MA, Roman-Goldstein S, et al. White matter changes associated with Feline GM2 gangliosidosis: Correlation of MR findings with pathologic and ultrastructural abnormalities[J]. Am J Neuroradiol, 1995, 16(6): 1219-1226.