摘要目的:探讨IVIM-DWI诊断和鉴别胰腺癌和胰腺神经内分泌肿瘤的最佳量化参数。材料与方法:应用GE Discovery MR750 3.0T磁共振扫描仪对手术证实的22例胰腺癌和17例胰腺神经内分泌肿瘤患者行胰腺多b值DWI。应用IVIM双指数模型测量胰腺癌和胰腺神经内分泌肿瘤与非瘤区胰腺组织的表观扩散系数(ADC)、纯扩散系数(D)、假扩散系数(D*)和灌注分数(?覼),并应用单因素方差分析进行统计学分析。结果:胰腺癌的ADC和?覼低于非癌区胰腺组织(0.803×10-3 mm2/s vs 0.974×10-3 mm2/s;54.527% vs 64.486%),D高于非癌区胰腺组织(0.659×10-3 mm2/s vs 0.535×10-3 mm2/s),鉴别胰腺癌和非癌区胰腺组织时D诊断效能最高。胰腺神经内分泌肿瘤的ADC、D和?覼均高于非瘤区胰腺组织(0.933×10-3 mm2/s vs 0.753×10-3 mm2/s;0.549×10-3 mm2/s vs 0.429×10-3 mm2/s;67.275% vs 59.655%),鉴别胰腺神经内分泌肿瘤和非瘤区胰腺组织时ADC诊断效能最高。胰腺癌的ADC、D*和?覼低于胰腺神经内分泌肿瘤(0.803×10-3 mm2/s vs 0.933×10-3 mm2/s;4.852×10-3 mm2/s vs 11.301×10-3 mm2/s;54.527% vs 67.275%),鉴别胰腺癌和神经内分泌肿瘤是D*诊断效能最高。胰腺癌的D*明显低于G2~3期胰腺神经内分泌肿瘤(4.852×10-3 mm2/s vs 11.937×10-3 mm2/s)。结论:IVIM-DWI相关参数(ADC、D*、D、?覼)可以有效鉴别胰腺癌和胰腺神经内分泌肿瘤与非瘤区胰腺组织,IVIM-DWI是无创性诊断和鉴别胰腺癌和胰腺神经内分泌肿瘤的理想方法之一。
Abstract:Objective: To explore the optimal quantitative parameters obtained from IVIM-DWI for diagnosing and differentiating pancreatic cancer and neuroendocrine tumor. Methods: Subjects comprised 22 patients with pancreatic cancer and 17 patients with pancreatic neuroendocrine tumors, All the patients were confirmed by surgery. Pancreas multiple b value DWI was performed using GE Discovery MR750 3.0T scanner. Apparent diffusion coefficient(ADC), pure diffusion constant(D), pseudodiffusion coefficient(D*) and perfusion fraction(f) were calculated by using IVIM model. Parameters obtained from IVIM-DWI were tested by One-Way ANOVA. Results: ADC and f values of pancreatic cancer were lower than non-cancerous pancreatic tissue(0.803×10-3 mm2/s vs 0.974×10-3 mm2/s; 54.527% vs 64.486%, respectively). D of pancreatic cancer was higher than non-cancerous pancreatic tissue(0.659×10-3 mm2/s vs 0.535×10-3 mm2/s). D is superior to ADC and f for the differentiation between pancreatic cancer and non-cancerous pancreas. ADC, D and f values of pancreatic neuroendocrine tumor were higher than non-tumorous pancreatic tissue(0.933×10-3 mm2/s vs 0.753×10-3 mm2/s; 0.549×10-3 mm2/s vs 0.429×10-3 mm2/s; 67.275% vs 59.655%, respectively). ADC is superior to D and f for the differentiation between pancreatic neuroendocrine tumor and non-tumorous pancreas. ADC, D* and f values of pancreatic cancer were lower than pancreatic neuroendocrine tumor(0.803×10-3 mm2/s vs 0.933×10-3 mm2/s; 4.852×10-3 mm2/s vs 11.301×10-3 mm2/s; 54.527% vs 67.275%, respectively). D* is superior to ADC and f for the differentiation between pancreatic cancer and neuroendocrine tumor. D* value of pancreatic cancer was significantly lower than G2~3 grade pancreatic neuroendocrine tumor(4.852×10-3 mm2/s vs 11.937×10-3 mm2/s). Conclusion: Quantitative parameters ADC, D, D* and f obtained from IVIM-DWI can diagnose and differentiate pancreatic cancer, neuroendocrine tumor and non-cancerous pancreatic tissue. IVIM-DWI may be a promising and non-invasive tool for diagnosing and differentiating pancreatic carcinoma and neuroendocrine tumor.
马婉玲,赵娓娓,宦 怡,魏梦绮,任 静,杨 勇,张劲松,潘 奇,张广文,董军强. IVIM-DWI在胰腺癌和神经内分泌肿瘤诊断和鉴别中的应用价值[J]. 中国临床医学影像杂志, 2017, 28(1): 49-54.
MA Wan-ling, ZHAO Wei-wei, HUAN Yi, WEI Meng-qi, REN Jing, YANG Yong, ZHANG Jin-song,PAN Qi, ZHANG Guang-wen, DONG Jun-qiang. The application value of IVIM-DWI for diagnosing and differentiating pancreatic cancer and neuroendocrine tumor. JOURNAL OF CHINA MEDICAL IMAGING, 2017, 28(1): 49-54.
[1]Waghraya M, Yalamanchilia M, Magliano MP, et al. Deciphering the role of stroma in pancreatic cancer[J]. Curr Opin Gastroenterol, 2013, 29(5): 537-543.
[2]Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma [J]. N Engl J Med, 1992, 326(7): 455-465.
[3]Klimstra DS, Pitman MB, Hruban RN. An algorithmic approach to the diagnosis of pancreatic neoplasms[J]. Arch Pathol Lab Med, 2009, 133(3): 454-464.
[4]Burns WR, Edil BH. Neuroendocrine pancreatic tumors: guidelines for management and update[J]. Curr Treat Options Oncol, 2012, 13(1): 24-34.
[5]王佳,钟燕,王海屹,等. 胰腺神经内分泌癌患者的磁共振影像诊断特征分析[J]. 中华医学杂志,2012,92(7):483-486.
[6]Philips S, Shah SN, Vikram R, et al. Pancreatic endocrine neoplasms: a current update on genetics and imaging[J]. Br J Radiol, 2012, 85(1014): 682-696.
[7]Conlon KC, Klimstra DS, Brennan MF. Long-term survival after curative resection for pancreatic ductal adenocarcinoma. Clinicopathologic analysis of 5-year survivors[J]. Ann Surg, 1996, 223(3): 273-279.
[8]Goonetilleke KS, Siriwardena AK. Systematic review of carbohydrate antigen(CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer[J]. Eur J Surg Oncol, 2007, 33(3): 266-270.
[9]王洪江,邵本深,赵作伟. 术中Tm-cut型针活检对胰腺肿块的诊断价值[J]. 中国普通外科杂志,2005,14(5):399-400.
[10]Kinney TP, Freeman ML. Recent advances and novel methods in pancreatic imaging[J]. Minerva Gastroenterol Dietol, 2008, 54(1): 85-95.
[11]Brenner R, Metens T, Bali M, et al. Pancreatic neuroendocrine tumor: added value of fusion of T2-weighted imaging and high b-value diffusion-weighted imaging for tumor detection[J]. Eur J Radiol, 2012, 81(5): 746-749.
[12]Jang KM, Kim SH, Lee SJ, et al. The value of gadoxetic acid-enhanced and diffusion-weighted MRI for prediction of grading of pancreatic neuroendocrine tumors[J]. Acta Radiol, 2014, 55(2): 140-148.
[13]Schmid-Tannwald C, Schmid-Tannwald CM, Morelli JN, et al. Comparison of abdominal MRI with diffusion-weighted imaging to 68Ga-DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas[J]. Eur J Nucl Med Mol Imaging, 2013, 40(6): 897-907.
[14]Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology[J]. AJR, 2007, 188(6): 1622-1635.
[15]Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407.
[16]Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505.
[17]Le Bihan D, Turner R, Moonen CT, et al. Imaging of diffusion and microcirculation with gradient sensitization: design, strategy, and significance[J]. J Magn Reson Imaging, 1991, 1(1): 7-28.
[18]Le Bihan D. IVIM method measures diffusion and perfusion[J]. Diagn Imaging(San Franc), 1990, 12(6): 133-136.
[19]Muraoka N, Uematsu H, Kimura H, et al. Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations[J]. J Magn Reson Imaging, 2008, 27(6): 1302-1308.
[20]Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique[J]. AJR, 2006, 187(6): 1521-1530.
[21]Lemke A, Laun FB, Klauss M, et al. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters[J]. Invest Radiol, 2009, 44(12): 769-775.
[22]Semelka RC, Custodio CM, Cem Balci N, et al. Neuroendocrine tumors of the pancreas: spectrum of appearances on MRI[J]. J Magn Reson Imaging, 2000, 11(2): 141-148.
[23]Gabata T, Matsui O, Kadoya M, et al. Small pancreatic adenocarcinomas: efficacy of MR imaging with fat suppression and gadolinium enhancement[J]. Radiology, 1994, 193(3): 683-688.
[24]Worhunsky DJ, Krampitz GW, Poullos PD, et al. Pancreatic neuroendocrine tumours: hypoenhancement on arterial phase computed tomography predicts biological aggressiveness[J]. HPB(Oxford), 2014, 16(4): 304-311.
[25]Kloppel G, Heitz PU. Pancreatic endocrine tumors[J]. Pathol Res Pract, 1988, 183(2): 155-168.
[26]Sutliff VE, Doppman JL, Gibril F, et al. Growth of newly diagnosed, untreated metastatic gastrinomas and predictors of growth patterns[J]. J Clin Oncol, 1997, 15(6): 2420-2431.